GSI Technology
High Performance Memory for Leading-Edge Technology

Didier Lasserre, Vice President Sales and Investor Relations
Doug Schirle, CFO | February, 2019
SAFE HARBOR

The statements contained in this presentation that are not purely historical are forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended, including statements regarding GSI Technology's expectations, beliefs, intentions, or strategies regarding the future. All forward-looking statements included in this presentation are based upon information available to GSI Technology as of the date hereof, and GSI Technology assumes no obligation to update any such forward-looking statements. Forward-looking statements involve a variety of risks and uncertainties, which could cause actual results to differ materially from those projected. These risks include those associated with normal quarterly and fiscal year-end closing processes. Examples of other risks that could affect our expectations regarding future revenues and gross margins include those associated with fluctuations in GSI Technology's operating results; GSI Technology's historical dependence on sales to a limited number of customers and fluctuations in the mix of customers and products in any period; the rapidly evolving markets for GSI Technology's products and uncertainty regarding the development of these markets; the need to develop and introduce new products to offset the historical decline in the average unit selling price of GSI Technology's products; the challenges of rapid growth followed by periods of contraction; intensive competition; and delays or unanticipated costs that may be encountered in the development of new products based on our in-place associative processing technology and the establishment of new markets and customer relationships for the sale of such products. Further information regarding these and other risks relating to GSI Technology's business is contained in the Company's filings with the Securities and Exchange Commission, including those factors discussed under the caption "Risk Factors" in such filings.
GSI TECHNOLOGY OVERVIEW

- Leadership team with +20 years of experience in memory chip sector
- Based in Sunnyvale, CA
- Largest portfolio of high performance memory products with core competency in hardware design, manufacturing and marketing
- Acquired Israeli-based AI developer MikaMonu in 2015
- $170 million market cap* with 22 million shares outstanding; NASDAQ: GSIT
- Insider ownership of 36%

GSI memory products are recognized for very high transaction rates, high density, low latency, high bandwidth, fast clock access times, and low power consumption.

* Market capitalization based on closing share price as of Feb. 05, 2019 and shares outstanding from the Company’s December 31, 2018 Form 10-Q of 22,044,083 as of January 31, 2019.
Advancing Our Business to New Fields

Launching two new product categories in high margin, growth markets:

- Leveraging SRAM platform with Rad-Hard and Rad-Tolerant chips for aerospace and defense in 2019 – high ASP, high margin products
- Merging AI innovation with core memory capabilities to develop the APU, an in-place associative computing technology for artificial intelligence and machine learning applications

In 2017 the global artificial intelligence chip market was valued at $4.5 billion and is projected to grow at a CAGR of 45.4% to $91.2 billion by 2025

Solid Platform for Growth

- Recent uses of capital:
 - $5 million AI acquisition in CY 2015
 - $61 million of common stock repurchased to date
- Increasing ASPs and gross margin in core business
- Strong balance sheet with $67.3 million in cash, short term and long term investments** provides sufficient liquidity for launch of new products

Revenue & Gross Margin Performance

*Reflects March 31 fiscal year end

**As of December 31, 2018, plus mid-point of FY 2019 revenue range of $11.6 - $12.6 and gross margin of 60% to 62% provided in 1/31/2019 earnings release.*
HIGHER CAPITAL EFFICIENT

FUNDING NEW PRODUCTS AND R & D INVESTMENT

• Efficient business model – fabless manufacturer with TSMC and master die production process

• Strong cash generation historically; currently cash flow neutral

• Primary uses of capital for new product development – 100% of R&D budget focused on APU

• APU R&D of $4 to $5 million per quarter since CY 2017 (up from $3 million per quarter) to develop software libraries and the produce APU V1 chip

• R&D spend continues at current levels through FY 2019, and foreseeable future
Revenue Growth Drivers: SigmaQuad™ SigmaDDR™

- Applications in switches, routers, avionics, and military-aerospace
- Broadest product offering across all product categories
- Best industry performance

Next Gen SRAM (3rd and 4th Generation)

- Fastest off-the-shelf SRAM on market
- Higher reliability and lower power consumption
- Higher ASP and gross margin contribution

Best in Class Capabilities

- SigmaQuad™ SRAMs industry leader for capacity, performance, and unequalled transaction rates
RADIATION HARDENED (RAD-HARD) SRAM

PRODUCT HIGHLIGHTS

• SigmaQuad Radiation Hardened SRAM
• Capabilities and technology unique to GSI’s Sigma Quad expertise
• 85%+ gross margin, with $30K ASP
• One project funded – anticipate shipment first half of CY 2019
• Introducing Rad Tolerant in 2019

PRIMARY APPLICATIONS/PRODUCT ROLLOUT

• High temperature, high pressure
 • Satellites, missiles
 • High altitude flights
• First product: 288Mb SQII+
• Second product: 144Mb NBT/SB
• Target products: 144Mb SQIV, 144Mb SQIII, APU
GSI is developing a new category of computing products for multiple Artificial Intelligence (AI) markets

Big Data
- Data analytics, machine learning, recommender systems, data mining, search engines and natural language processing

Cheminformatic and Bioinformatics
- Computational drug discovery, virtual drug screening
- Genomics

Computer Vision and Visual Search
- Autonomous vehicles, sensor fusion
- Visual search, facial recognition, warehouse robotics, missile guidance

Cyber Security
- Firewall, antivirus, encryption, web filtering, IDS/IPS, DPI
A NEW MODEL IS NEEDED FOR AI

NEW MODEL TO FULLY DEVELOPING AI’S POTENTIAL

The laws that have governed computing need to be rewritten to achieve the performance required to fully develop AI’s potential.

Traditional computing based on “von Neumann architecture” has limitation for advanced AI applications

- Big data – too power hungry, too slow
- Computer vision /self-driving cars – too power hungry, low accuracy
- Cheminformatic and Bioinformatics for drug discovery – too slow
- Visual search – too slow, limited accuracy

With the need for new systems to improve computation and outcomes,
GSI is entering the market with a new model for AI chip design
Current AI configurations based on von Neumann architecture
Use graphic processing units (GPU) for parallel processing
Computation rates slowed due to bottleneck from throughput limitations
Results in long processing times and high power consumption
Not scalable for the massive data sets needed for advanced AI applications
Advantages of GSI’s In-place Associative Processing

- Computation and search occur inside the Associative Processor (APU)
- Direct response from APU to CPU removes bottleneck
- Computation times reduced from hours to seconds or milliseconds
- Significant reduction of power consumption and system cost
- Scalable – unique feature to GSI APU
APU’S UNIQUE ADVANTAGES IN SEARCH

APU (VERSION 1) BEST SUITED TO SEARCH WITH IMPROVED ACCURACY OF RESULTS

Visual search searches with images:
- Online retail and home design where style is difficult to describe using text
- Big-pharma cheminformatics for drug discovery, drug screening and genomics

<table>
<thead>
<tr>
<th>AI Chip</th>
<th>Nvidia GPU</th>
<th>Google TPU</th>
<th>Intel NERVANA NPP</th>
<th>Graphcore IPU</th>
<th>ASIC</th>
<th>FPGA</th>
<th>APU1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity search</td>
<td>Visual search</td>
<td>Video search</td>
<td>Recommender systems</td>
<td>Drug discovery</td>
<td>Drug screening</td>
<td>Genomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

View this slide in your browser for more information.
VISUAL SEARCH FASTEST GROWTH SEGMENT IN RETAIL AI

APU IMPROVES CONSUMER EXPERIENCE WITH FASTER, ACCURATE SEARCHES

Visual search simplifies search, replacing text-based descriptions with images or pictures

Submit a picture of a vase and visual search finds the vase on a retailer’s website

* Source: Global Markets Insights, Inc. May 2018
Weizmann collaborating with GSI to improve outcomes in molecular structural similarity search, a powerful research method used in drug discovery.

Visual screening’s role in drug discovery is searching for molecules that have the highest probabilities of success to select for further study.

This reduces in vitro experiments—significantly reducing the time and costs of drug discovery.

Goal is to improve outcomes with the highest probability of success while lowering cost.

Simulations with GSI APU improve search speed by orders of magnitude with a reduction in query time from 10 minutes to 300 milliseconds.

Drug discovery is very costly with high failure rates.

The average cost to develop a new drug is around $2.6 billion.

90% of new drugs fail to win approval.

Drugs that win approval can take at least 10 years to come to market.

Source: Tufts Center for the Study of Drug Development (CSDD) study. June 2018
APU SOFTWARE AND HARDWARE DESIGN

MULTIPLE STRENGTHS DELIVER BIG ADVANTAGES IN AI COMPUTING

• APU’s unique design combines AI software with GSI’s high-performance custom chips
• Unique in APU software design is the programming interface that allow multiple levels of programing from assemble code up to TensorFlow Python

GSI’s APU Strengths
• Software and hardware expertise
• Extensive IP – 18 patents granted, 23 pending
• Depth of AI talent – team of over 60 based in Israel and U.S.
• Leveraging 20+ years of operational performance and AI expertise
Self-Funding AI Start Up

<table>
<thead>
<tr>
<th>($ in Millions)</th>
<th>As of 12/31/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidity: cash, cash equivalents, short-term</td>
<td>$67.3</td>
</tr>
<tr>
<td>investments and long-term investments</td>
<td></td>
</tr>
<tr>
<td>Total assets</td>
<td>$104.1</td>
</tr>
<tr>
<td>Debt</td>
<td>$0.0</td>
</tr>
<tr>
<td>Shareholder Equity</td>
<td>$91.2</td>
</tr>
</tbody>
</table>

Balance Sheet Metrics:

- Working capital: $65.5
- Current ratio: 9.0
PATH TO FUTURE GROWTH

• Leveraging leadership in performance memory chips to enter new product categories

• New products will drive future top line growth and further gross margin improvement

• Developing APU1 for large, high growth AI markets in similarity search segment, tracking to CY 2019 milestones

 • Sample evaluation – Ongoing
 • Summer CY 2019 – Demo boards to alpha and limited beta customers
 • CY 2020 – Anticipated APU1 launch
GSI TECHNOLOGY
High Performance Components for Leading-Edge Technology

GSITechnology.com / IR Contact: GSIT@HaydenIR.com
APPENDIX SLIDES
AI CHIP LANDSCAPE OVERVIEW

APU1 EXCELS WHERE CURRENT TRADITIONAL PROCESSORS UNDERPERFORM

- Visual search requires high processing speeds and accuracy
- APU1 speed and accuracy is ideal for visual search
- APU1 is not optimal for training, inference

<table>
<thead>
<tr>
<th>Application</th>
<th>Nvidia GPU</th>
<th>Google TPU</th>
<th>Intel NERVANA NPP</th>
<th>Graphcore IPU</th>
<th>ASIC</th>
<th>FPGA</th>
<th>APU1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity search</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Training</td>
<td>✔️</td>
<td>✗</td>
<td>❁</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Inference</td>
<td>❁</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>
INCOME STATEMENT

CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS

(in thousands, except per share data)
(Unaudited)

<table>
<thead>
<tr>
<th></th>
<th>Three Months Ended</th>
<th>Nine Months Ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenues</td>
<td>$14,702</td>
<td>$12,832</td>
</tr>
<tr>
<td>Cost of goods sold</td>
<td>$4,663</td>
<td>$4,801</td>
</tr>
<tr>
<td>Gross profit</td>
<td>10,039</td>
<td>8,031</td>
</tr>
<tr>
<td>Operating expenses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research & development</td>
<td>5,171</td>
<td>5,752</td>
</tr>
<tr>
<td>Selling, general and administrative</td>
<td>2,632</td>
<td>2,673</td>
</tr>
<tr>
<td>Total operating expenses</td>
<td>7,803</td>
<td>8,425</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>2,236</td>
<td>394</td>
</tr>
<tr>
<td>Interest and other income (expense), net</td>
<td>96</td>
<td>145</td>
</tr>
<tr>
<td>Income (loss) before income taxes</td>
<td>2,332</td>
<td>(249)</td>
</tr>
<tr>
<td>Provision for income taxes</td>
<td>70</td>
<td>102</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$2,262</td>
<td>(351)</td>
</tr>
<tr>
<td>Net income (loss) per share, basic</td>
<td>$0.10</td>
<td>$(0.02)</td>
</tr>
<tr>
<td>Net income (loss) per share, diluted</td>
<td>$0.10</td>
<td>$(0.02)</td>
</tr>
<tr>
<td>Weighted-average shares used in computing per share amounts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>21,979</td>
<td>21,844</td>
</tr>
<tr>
<td>Diluted</td>
<td>22,769</td>
<td>21,844</td>
</tr>
</tbody>
</table>
BALANCE SHEET

CONDENSED CONSOLIDATED BALANCE SHEETS
(\textit{in thousands})
(\textit{Unaudited})

<table>
<thead>
<tr>
<th></th>
<th>Dec. 31, 2018</th>
<th>March 31, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$40,529</td>
<td>$40,241</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>16,557</td>
<td>18,124</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>8,160</td>
<td>5,279</td>
</tr>
<tr>
<td>Inventory</td>
<td>5,949</td>
<td>5,547</td>
</tr>
<tr>
<td>Other current assets</td>
<td>2,558</td>
<td>2,080</td>
</tr>
<tr>
<td>Net property and equipment</td>
<td>9,184</td>
<td>8,172</td>
</tr>
<tr>
<td>Long-term investments</td>
<td>10,183</td>
<td>7,923</td>
</tr>
<tr>
<td>Other assets</td>
<td>10,957</td>
<td>12,174</td>
</tr>
<tr>
<td>Total assets</td>
<td>$104,077</td>
<td>$99,540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dec. 31, 2018</th>
<th>March 31, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current liabilities</td>
<td>$8,213</td>
<td>$7,404</td>
</tr>
<tr>
<td>Long-term liabilities</td>
<td>4,657</td>
<td>5,321</td>
</tr>
<tr>
<td>Stockholders’ equity</td>
<td>91,207</td>
<td>86,815</td>
</tr>
<tr>
<td>Total liabilities and stockholders’ equity</td>
<td>$104,077</td>
<td>$99,540</td>
</tr>
</tbody>
</table>
Experienced Management Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Years of Experience</th>
<th>Years with GSI</th>
<th>Prior Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee-Lean Shu</td>
<td>President and CEO, Executive Officer</td>
<td>38</td>
<td>23</td>
<td>Sony, AMD</td>
</tr>
<tr>
<td>Doug Schirle</td>
<td>Chief Financial Officer</td>
<td>38</td>
<td>19</td>
<td>Cypress, Pericom</td>
</tr>
<tr>
<td>Didier Lasserre</td>
<td>VP Sales and IR</td>
<td>30</td>
<td>21</td>
<td>Cypress, Selectron</td>
</tr>
<tr>
<td>Avidan Akerib</td>
<td>VP of Associative Computing</td>
<td>38</td>
<td>3</td>
<td>MikaMonu, NeoMagic</td>
</tr>
<tr>
<td>Patrick Chaung</td>
<td>SR VP of Memory Design</td>
<td>41</td>
<td>9</td>
<td>Sony, AMD</td>
</tr>
<tr>
<td>Robert Yau</td>
<td>VP of Engineering</td>
<td>38</td>
<td>23</td>
<td>Sony, Mosel Vitelic</td>
</tr>
<tr>
<td>Boy-Tay Wu</td>
<td>VP of Taiwan Operations</td>
<td>35</td>
<td>22</td>
<td>Atalent, AMD</td>
</tr>
</tbody>
</table>